Counting | Multiplication rule and tree | | Symbol | Number of types of | _ | | |--|--|---|--|--|--| | diagrams | A | $n_{ times}$ | stars | Number of leaves | | | | | $n_{\scriptscriptstyle \square}$ | boxes for each star | $ = n_{\bowtie} \cdot n_{\square} \cdot n_{\bigcirc} $ | | | | | $\overline{n_{\bigcirc}}$ | disks for each box | _ | | | Factorial | $n! := n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$ | | | | | | | 0! := 1 | | | | | | Permutations | * (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c | □ {n objects | can be produced by objects in r distinct I | Number of distinct ordered arrangements that can be produced by placing r of n distinct objects in r distinct locations. ${}_{n}P_{r}=\frac{n!}{(n-r)!}$ | | | Permutations
with
repetitions | Number of spellings (neglecting distinguishing subscripts) B ₁ A ₁ N ₁ A ₂ N ₂ A ₃ - A ₁ B ₁ N ₁ A ₂ N ₂ A ₃ - | r _B ! permutations
of B "among slots"
available for B
B ₁ A ₁ N ₁ A ₂ N ₂ A ₃ ◆ | of Ns am | | | | | Number of distinct ordered arrangements of n objects, r_1 of which are indistinguishable copies of one item, r_2 of which are indistinguishable copies of another item, etc. $\frac{n!}{r_1! r_2! \cdots}$ | | | | | | Combinations (interpretation I: arrangements of stars and balls) | 4 0 0 4 0 | | | Number of ways to arrange k stars and $n-k$ balls in n distinct locations ${}_nC_k = \frac{n!}{(n-k)!k!}$ | | | Combinations
(interpretation
II: objects in
hand) | | r objects | from among n distin | Number of ways to grab r objects in hand from among n distinct objects. ${}_nC_r = \frac{n!}{(n-r)!r!}$ | | | | k stars in n distinguishable boxes: $ \left[$ | | | | |